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A DYNAMIC CONTACT PROBLEM FOR AN ELASTIC HALF-PLANE IN THE CASE OF
HIGH FREQUENCY OSCILLATIONS®

S.I. BOYEV and M.A. SUMBATYAN

Harmonic high frequency oscillations of a rigid stamp coupled without
friction tc an elastic half-plane are considered. The main difficulty

in constructing the high-frequency asymptotic forms is that of carrying
out the effective factorization cf the kernel of the basic integral
equation. A function is proposed, which takes into account all properties
of the kernel, enables it tc be uniformly approximated and is easily
factorized. Such a solution of the problem of approximate factorization
makes it possible to write, in a simple explicit form, the principal term
of the asymptotic expression of the solution. The nature of the distribution
of contact stresses under the stamp is studied, as well as the compliance
of the foundation and phase shift between the applied force and the
displacement of the stamp.

The problem was studied earlier in /l-4/ for the low-frequency case. Three classes of
solutions were constructed in /5/, the low freguency solution, one effective at medium
frequencies, and a high-frequency sclution. The high freguency soclution of /5/ however does
net capture the true roct-type singularities cf the contact stress near the sharp edges of
the stamp.

1. 1as we know /4, 5/, the problem in gquestion can be reduced to the following -integral
equation:

1
) _ .
\son ’}_’>m-.—.—a—n', lr]< 1 (1.1)
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The dependence of all guantities on time is assumed to be of the type f(z, 1) = Relf () e ™).
In (1.1) ¢(x) is the contact stress amplitude, W is the stamp oscillation amplitude, A is a
parameter whichis small at high frequencies, 6,v are the elastic constants, a is the stamp
half-width and » is the frequency of the oscillations. The initial Eq.{(1.1) is equivalent
to the following two Egs./6/:
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The problem in question represents a typical problem with singular perturbations in the
small parameter A.

In constructing the principal term of the asymptotic expression of the sclution as A —0,
the last integral in (1.2) can often be neglected, and (1.2) then becomes the Wiener-Hopf
equation ona semi-axis /6, 7/. This usually produces an error of order exp{(—ei) (e >0} uniformly
in z. In some instances the error is of the power-type, i.e. it becomes more singificant.

Below we shall show that in the present problem the discrepancy caused by neglecting the term
in question is small and of power type. Namely, we have the estimate

2, T .
Slm(-{-&-‘f}—r(t)lf\(-!'—fﬂdf=0(3-"), A—0 (1.5

uniformly in =z

In what follows, our aim will be to construct the principal term of the asymptotic form
of the solution. The estimate (1.5) leads to the conclusion that the principal term of (1.4)
is found by solving the problems for two semi-infinite stamps (1.2) and one infinite stamp
(1.3). Physically, this means that the high-frequency oscillations are of such short wave-
length, and that the perturbations occurring at the right end of the stamp have, in general,
practically no influence on the wave processes at the left end, and vice versa.

The sclution of the equation on the axis {1,3) is constructed using a Fourier transformation
and has the form . ..

v(z) = —i (BA)"1 = v (1.6}

To obtain, successfully, a solution of the equation on the semi-axis
o
1
Sm(t}ﬁ’(z-f)dr:T (1.5
o

we must factorize the kernel symbol. Since the solution of (1.7) is stable under small
perturbations of the symbol on the real axis /4/, we shall factorize it approximately.

2. The kernel symbol L,(w represents a combination of four radicals Vitp Vu—1,

Yi—Pp Vu—1 with branch points. Let us produce, in the plane of the complex variable u,

the cuts connecting the points —§ and —1 with infinity in the half-plane, and points § and

1 with infinity in the upper half-plane. 1In addition to the branch points on the real axis,
the symbol has two Rayleigh poles u= xu, u;,>1. According to the principle of limit absorption
the contour ¢ in (l.1) coincides with the real axis passing the positive singularities fron
below and the negative ones from above,

The function L, {(u) shows a qualitatively different behaviour on different segments of the
real axis. When |uz!>1 the function is real, it becomes complex when B<|ul<«1, and imaginary
when jul<§f.

Let us approximate the symbel L, (x. by the expression

R 4u2]fu3— B 0 = T L (Qut e 12 .
e A (-7 Yy Iy Ep— g T 2.5
Al wd— )
T =T M_ote Vo) =1t

Im:>0, A4>0, B>0
M, =B =p Va1 (/2 w1t

The function L (u), as well as L,{uw, is ever, has two Rayleigh poles wu= - u anc exhibit
the same gualitative behavicur on different segments of the real axis. In addition, it
captures the behaviour exactly only at zerc and infinity. It also has the true sign of the
imaginary part, which is important when satisfying the uniqueness theorem /4/. The expressior
M.y has a zerc in the upper half-plane, and the zero must be cancelled by the zero in the

denominator ws= =3I, We note that the point u=-—: represents its second zero,
Taking all that has been said intc account, we can factorize the function L (s thus
AY
L= utp M. ) @.2)

(U 1) (e +2) (2 79)

3. Applying the Wiener-Hopf method to Eq.(1.7) and taking the factorization (2.2) intc
account, we arrive at the followinc expression for the Fourier transform of the function ()

C utuwE+a@+d _ ¢ @dwetiptD
L= TR N W Verpim < en
uyjz?

BuyuF BV L1 —(F2uti), C=W
AW =Bt (u-+Pw+1) —W2u+ 10 =bu+) Dt (=7 b= B — 4 (8.2)
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Thus we have

Cuuy)
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6y = dy
This makes it possible to write the function w{z)
following inversion formulas:
1 o S
GraveTE T IVEDy Ve @4

in explicit form, since we have the

—— ~i(5'4-x) 3
‘/:4_'1}1 - eﬁ — 'Y T ey —iz(I—m, >0
The explicit form of the function w(z) as well as Eg.({3.1) yield directly the following
estimate: ; o
© (1) ~ v+ a2 oo (3.5

which shows that the boundary-layer solution, as we expected, transforms in the outer zone into
the solution of the problem on an infinite stamp (1.6). The process however is very slow.
Adding the estimate (3.5) and the obvious estimate
Rig) ~ o™ o277 0o ™™ 20 4 0o 3.6
we can confirm the validity of relation (1.5).
Let us £find the relation connecting the force acting on the stamp with its subsidence

(assuming that the stamp is weightless)

1 1
2 PRI t—z
P=a Sq(z)a’::GWS[m( ';’;-:.m{ ;_‘ S P @n
- ) : : -

[0 (55)=+] oo

The latter equality holds by virtue of estimate

8
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(3.5), with an error of order O

egual to the error in the solution of {l1.1). Further, since
ac . ‘ « ~
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Fig.l Fig.2 Fig.3

(H (n is the Heaviside function) we finally obtain the following expression for the compliance of the

foundation:

. R A § ] as ay .
w =3a‘:~m D=T{ZRQ[T(Gl+ﬁ)]—--§§T} 3.9
We note that the constants € and U in {3.9) are real; therefore the phase shift between

the depression and applied force is given by the formula

8 = —arctg (BCDLY! (3.10)
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The formula for the amplitude of the subsidence is also easily obtained.
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It is clear that the solution of the problem for a weightless stamp can be converted
to that for a stamp of any mass. We achieve this by multiplying it by a complex factor.

4. All computations were carried out for v=0.3. In this case we have uy = 1.07827.  The
values A = 0.073330; B = 1.04835; : = 0.30252 + 0.044848 i of the coefficients obtained ensure the uniform
approximation {2.1) with exact values at zerc and infinity, and with a maximur relative error
of less than 10%. At the most "critical" point, i.e. at the Rayleigh pole u= 4, the error
does not exceed 2%, and at the branch points u=8,u=1 it does not exceed 9%, The value of
the constant in (3.2} is 1 = 1.15678 - 0.12686:.

The contact stress was calculated using the explicit formulas (1.4), (3.4). Figs.l-4
show the curves for the contact stresses referred to GW.ei) respectively, for the values of
nooegual to VM Vi tawe Curves l-5 correspond to the times ¢ =0, a/8, /4, 37.8, n 2 taken in the
guarter period 0< t< n2 The qualitative change in the formof the distribution of the contact
stresses under the stamp is clearly seern. ror medium values of i (L)) the graph is smooth. At moderately
small 4(L, and 1/160C) the oscillations in the outer zone are superimposed on the fundamental
{constant} value {(see {(3.5)) and for these values / they are still real. For very small
# (Lo the effect cf the osciliaticn is very insignificant in the outer zone, and is retained
only in a narrow boundary layer.

Fig.5 shows the dependence cf the amplitude modulus |W| referred toc P/(26) and phase
shift (2.10) on /. We ncte that the degenerate sciution (1.6} would give a constant value of
g=—n2 for the phase shift.

Fig.6 illustrates the attempt to cempare the computed expressions ey (z).P  for m,= 0.4
in the frameworx of the prcposed method (sclid lines) for large values of i =1, withthe sclution
given in /3/, p.74 {(dashed lines: obtained with the help of the methoad of crthogonal polynomials
in which 2-3 terms were taker,, Here it was taken intc account that the time dependence in /3/
was apparently taken in the form f(a 1) = Im (i (z} ¢*']. We discover the gqualitative agreement of
the form of behaviour of the contact stress curves, This implies that the method proposed

ouy contac STresg Ccarveg, ini1s 1m piles tTha wne M poi-48]

here can be used for mediwr values of 7 of the order of several tens.
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