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IN THE CASE OF 

S.I. BOYEV and M.A. SUMBATYAN 

Harmonic high frequency oscillations of a rigid stamp coupled without 
friction tc an elastic half-plane are considered. The main difficulty 
in constructing the high-frequency asymptotic forms is that of carrying 
out the effective factorization of the kernel of the basic integral 
equation. A function is proposed, which takes into account all properties 
of the kernel, enables it to be uniformly approximated and is easily 
factorized. Such a solution of the problem of approximate factorization 
makes it possible to write, in a simple explicit form, the principal term 
of the asymptotic expression of the solution. The nature of the distribution 
of contact stresses under the stamp is studied, as well as the compliance 
of the foundation and phase shift between the applied force and the 
displacement of the stamp. 

The probiem was studied earlier in /l-4/ for the low-frequency case. Three classes of 
solutions were constructed in /5/, the low frequency solution, one effective at medium 
frequencies, and a high-frequency scl.ation. The high frequency solution of /5/ however does 
not capture the true root-type singu larities cf the contact stress near the sharp edges of 
the stamp. 

1. As we know /4, 5,, the problerr. in question car. be reduced to the fellowing.integral 
equation: 

The dependence of all quantities on time is assumed to be of the type !(~,f)= Re[f(+)c-'X1]. 
In (1.1) F(Z) is the contact stress amplitude, W is the stamp oscillation amplitude, h is a 
parameter whichis small at high frequencies, G,v are the elastic constants, a is the stamp 
half-width and ): is the frequency of the oscillations. The initial Eq.tl.1) is equivalent 
to the following twoEqs./6/: 

(1.3) 

provided that 

*Prikl.Matem.Mekhan.,49,6,1039-1043,19E5 
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The problem in question represents 
small parameter A. 

a typical problem with singular perturbations in the 

In constructing the principal term of the asymptotic expression of the solution as k-o, 
the last integral in (1.2) can often be neglected, and (1.2) then becomes the Wiener-Hopf 
equation onasemi-axis /6, 71. This usually produces an error of order erpf-EL) (E >O) uniformly 
in I. In some instances the error is of the power-type, i.e. it becomes more singificant. 
Below we shall show that in the present problem the discrepancy caused by neglecting the term 
in question is small and of power type. Namely, we have the estimate 

(1.5) 

uniformly in z. 
In what follows, our aim will be to construct the principal term of the asymptotic form 

of the solution. The estimate (1.5) leads to the conclusion that the principal term of (1.4) 
is found by solving the problems fortwosemi-infinite stamps (1.2) and one infinite stamp 
(1.3). Physically, #is means that the high-frequency oscillations are of such short wave- 
length, and that the perturbations occurring at the right end of the stamp have, in general, 
practically no influence on the wave processes at the left end, and vice versa. 

The solution of the equation on theaxis (1.3) is constructed using a Fourier transformation 
and has the form " (2) = --i (Bk)_' z " (1.61 

To obtain, successfully, a solution of the equation on the semi-axis 

oc 

s 
w (f)K (2 - f)dl = + (1.7) 

0 

we must factorize the kernel symbol. Since the solution of (1.7) is stable under small 
perturbations of the symbol on the real axis /4/, we shall factorize it approximately. 

2. The kernel symbol L,(U) represents a combination of four radicals I/u,fl1/Li 

I'Ufi,u'U with branch points. Let us produce, in the plane of the complex variable u, 
the cuts connecting the points -@ and -1 with infinity in the half-plane, and points fi and 
1 with infinity in the upper half-plane. In addition to the branch points on the real axis, 
the symbol has two Rayleigh poles u = TU,, u,> 4. Acccrding to the principle of limit absorption 
the contour (I in (1.1) coincides with the real axis passinq the positive singularities fro- 
below and the negative ones from above. 

The function L,(U) shows a qualitatively different behaviour on different segments of thf 
real axis. When Iii ‘> 1 tie function is real, it becomes complex when p<i u!<i, and imaginar; 
when [ul<@. 

Let us apprcxizats the syitjicl L,(u. by the expression 

(2.lj 

The function L(U). as well as L,iu,, is even, has two Ra.yieia _h pcles u==u, a?d ex?ibits 

the same qnaiitative beha,:ic.& r on different seqments of the real axis. In addition, it 
captures the beha\r:o?zr exactly only at zerc and infinity. It also has the true sign of the 
imaginary part, which is important when satisfying the uniqueness theorem /4/. The expression 
M,(U) has a zerc in the upper half-plane, and the zero must be cancelled by the zero in the 
denominator u=--i. We note that the point u=--P represents its second zero. 

Taking all eat has been said intc account, we car factorize the function L(u) thus 

AbGT 
JL (u) = (u * ul) (U + L) (u + 4) GM* Crc) (2.2, 

3. Applying the Wiener-Hcpf method to Eq.(l. 7) and taking the factorization (2.2) intc 
account, we arrive at the following expression for the Fourier transform of the function 0 (I): 



Thus we have 
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(3.3) 

This makes it possible to write the function o (8) in explicit form, since we have the 
following inversion formulas: 

1 c*v 
(u + tl) I/ui-B 

4~ - i- erf f- II $I - (1) 
1/8-?r 

(3.4) 

$E& 
&In')-*) 

I= 
--dw~~erfJ-iz(l-q), +>O 

The explicit form of the function o(z) as well as Eq.13.1) yield directly the following 
estimate: 

0 (f) - ” + 
i&*-“, ae 1 t-j-m (3.5) 

which shows that the boundary-layer solution, as we expected, transforms inthe outer zone into 
the solution of the problem on an infinite stamp (1.6). The process however is very slow. 

Adding the estimate (3.5) and the obvious estimate 

K (2) - EIPC + C$C i&z-a', +CpPz-*'~, I- + P (3&j 

we can confirm the validity of relation 11.5). 
Let us find the relation connecting the force acting on the stamp with its subsidence 

(assuming that the stamp is weightless) 

The latter equality holds by virtue of estimate (3.5), with an error of order 0 (i.’ 1) 

equal to the error in the soiution of (1.1). Further, since 
0: 

dz= i. j [w !t) - i H ff)] dr = ?. IQ, (u) - 1., (v)f,_ 13.5) 
-3 

‘p 

-2 

-f 

0 

I 

Fig.1 Fig.2 Fig.3 

(X(0 istheheavisidefunction) we finallyobtainthe following expression forthecomplianceofthe 
foundation: 

(3.9) 

We note that the constants C and Din (3.9) are real; therefore the phase shift between 
the depression and applied force is given by the formula 

e = --arctg (gcny-i (3.10) 



The formula for the amplitude of the subsidence is also easily obtained. 

Fig.4 Fig.5 Fig.6 

It is clear that the solution of the problem for a weightless stamp can be converted 
to that for a stamp of any mass. We achieve this by multiplying it by a complex factor. 

4. All computations were carried out for Y= 0.3. In this case we have LI,= 1.0X?;. The 
values A = 0.0%330; B = LO4635; ; = O.XG:!+ 0.04464Y i of the coefficients obtained ensure the uniform 
approximation (2.1) with exact values at zero and infinity, and with a maximum relative error 
of less than 10%. At the most "critical" point, i.e. at the Rayleigh pole u= u1 the error 
does not exceed 29, and at the branch points u= fi,u = 1 it does not exceed 9%. The value of 
the constant in (3.2) is 9 = i.ljfi;g TC~.lXi88i. 

The contact stress was caiculated using the explicit formulas (1.4), (3.4). Figs.l-4 
show the curves for the ccntact stresses referred to GIl,(ai.) respectively, for the values of 
i. ec_ual to l'.,l:co,1;6ti,1 156(1_ C"rves 2-S correspond to the times t=O,rr,'&,ni4,3~&~ 2 taken in the 
quarter period 0~: tC 3 2. The qualitative change inthe fcrmof thedistributionofthecontact 
stresses under the stampis clearly seer.. iormediumvaluesof i.(',.)the graph is smooth. Atmoderately 
small i. (I ((1 and 1'160; the oscillations in the outer zone are superimposed on the fundamental 
iconstant! value (see (3.5): and for these values i. they are still real. Fcr very small 
>(<,sc) the effect cf the cscillaticn is very insignificant in the outer zone, and is retained 
only in a narrow boundary layer. 

Fig.5 shows the dependence of the amplitude modulus I W/ referred to P!(X) and phase 
shift (3.10) cn .! We note that the degenerate sclution (1.6) would give a constant value of 
tJ=--.?:! for the phase shift. 

Fig.6 ill-strates the attempt tc ccrr.;jare the comp;lted expressions .?aJJ (Zi.P for m. = Cl.; 
in the framework of ?he prcposed net:hod .sclid lines) for large values of i.= 1, with the solution 
given in /3,', p.74 (dashed lines! obtained with the help of the met..od of crthogocal polynamials 
in which 2--3terns were taker.. Here it was ttier. i 'r.tc account that the time dependence in /3/ 
was apparently taken in the fcr:. I (2, I) = em, 1: (I! t”l 1 We discover the qualitative agreement of 
the form of behaviour of the contact stress c'Jrves. This implies that the method proposed 
here can be used for medi.z vil.les of i. of the order of several tens. 
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